(2014年湖北天门学业10分)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) |
10 |
11 |
13 |
销售量y(kg) |
|
|
|
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F. 试说明:(1)△CBE≌△CDF; (2)AB+AD=2AF.
某汉堡店员工小李去两户家庭外送汉堡包和澄汁,第一家送3个汉堡包和2杯橙汁,向顾客收取了24元,第二家送2个汉堡包和3杯橙汁,向顾客收取了21元.
(1)每个汉堡包和每杯橙汁分别多少元?
(2)若有一顾客同时购买汉堡包和橙汁且购买费用恰好为21元,问汉堡店有哪几种配送方案?
2012年5月30日,在“六一国际儿童节”来临之际,某初级中学开展了向贫困地区“希望小学”捐赠图书活动.全校1000名学生每人都捐赠了一定数量的图书,已知各年级人数分布的扇形统计图如图24-1所示. 学校为了了解各年级捐赠图书情况,按照图-1的比例从各年级中随机抽查了共200名学生,进行捐赠图书情况的统计,绘制成如图24-2的频数分布直方图.
根据以上信息回答下列问题:
(1)本次调查的样本是 ▲;
(2)从图-2中,我们可以看出人均捐赠图书最多的是___▲____年级;
(3)随机抽查的200名学生中九年级学生共捐赠图书多少册?
(4)估计全校共捐赠图书多少册?
如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形槽中,使三角板的三个顶点A、C、B分别在槽的两壁及底边上滑动,已知∠D=∠E=90°,在滑动过程中,你发现线段AD与BE有什么大小关系?试说明你的结论.
先化简,再求值.(本题6分)
(x+2)2-(x+1)(x-1)+(2x-1)(x-2),其中x= -3