(年福建莆田14分)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=(0<m<
)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
我市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行统计,并将统计结果绘制成如下统计图表,如图,请你结合图表所给信息解答下列问题:
等级 |
A(优秀) |
B(良好) |
C(合格) |
D(不合格) |
人数 |
200 |
400 |
280 |
(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A”部分所对应的圆心角的度数是;
(3)若我市九年级共有50000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数为__________人;
(4)若甲校体育教师中有3名男教师和2名女教师,乙校体育教师中有2名男教师和2名女教师,从甲乙两所学校的体育教师中各抽取1名体育教师去测试学生的身体素质,用树状图或列表法求刚好抽到的体育教师是1男1女的概率.
如图,已知反比例函数与一次函数
的图象在第一象限相交于点
.
(1)试确定这两个函数的表达式;
(2)连接OA、OB,求△AOB的面积.
先化简,再求值:,选择自己喜欢的一个x求值.
如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.
如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,。
(1)求点A的坐标;
(2)若直线AB交y轴于点C,求的面积。