(2014年福建漳州14分)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.
(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是 ,衍生直线的解析式是 ;
(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;
(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
如图,有一个面积为150㎡的长方形鸡场,鸡场的一边靠墙(墙长18,米),墙的对面有一个2米宽的门,另外三边(门除外)用篱笆围成,篱笆总长为33米,求鸡场的长与宽分别是多少?
解方程(
(1)、(配方法)(2)、
(公式法)
某新建住宅小区里,有一块三角形绿地,现准备在其中安装一个照明灯P,使它到绿地各边的距离相等.请你在图中画出安装照明灯P的位置.
结论:
如图,在中,
,
,
,AF=10cm, AC=14cm,动点E以2cm/s的速度从
点向
点运动,动点
以1cm/s的速度从
点向
点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t
(1)求证:在运动过程中,不管t取何值,都有;
(2)当t取何值时,与
全等
如图,在四边形ABCD中,DC∥AB,BD平分∠ADC,∠ADC=60°,过点B作BE⊥DC,过点A作AF⊥BD,垂足分别为E、F,连接EF判断△BEF的形状,并说明理由