(年黑龙江牡丹江10分)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:
(1)该工厂有哪几种生产方案?
(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?
(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.
如图,在△ABC中,∠ACB=90º,AC=3,BC=4.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF//AB交直线DE于F.设CD=x.
(1)当x取何值时,四边形EACF是菱形?请说明理由;
(2)当x取何值时,四边形EACF的面积等于3?
直线y=x+2与x轴、y轴分别交于A、B两点,D是x轴上一点,坐标为(x,0),△ABD的面积为S.
(1)求点A和点B的坐标;
(2)求S与x的函数关系式;
(3)当S=12时,求点D的坐标.
下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题
(1)李刚同学6次成绩的极差是 .
(2)李刚同学6次成绩的中位数是 .
(3)李刚同学平时成绩的平均数是 .
(4)利用图的权重计算一下李刚本学期的综合成绩(平时成绩用四次成绩的平均数写出解题过程,每次考试满分都是100分)
已知圆O的直径AB、CD互相垂直,弦AE交CD于F,若圆O的半径为R.
求证:AE·AF=2 R.
如图,有一长方形的地,长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x的值.