(年新疆区、兵团12分)如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).
(1)写出A,B两点的坐标;
(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?
(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.
已知抛物线与
轴交于
两点,与
轴交于点
,连结
,
是线段
上一动点,以
为一边向右侧作正方形
,连结
.若
,
.
(1)求抛物线的解析式;
(2)求证:;
(3)求的度数;
(4)当点沿
轴正方向移动到点
时,点
也随着运动,则点
所走过的路线长是.
如图,直线与线段
相交于点
,点
和点
在直线
上,且
.
(1)如图1所示,当点与点
重合时 ,且
,请写出
与
的数量关系和位置关系;
(2)将图1中的绕点
顺时针旋转到如图2所示的位置,
,(1)中的
与
的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)将图2中的拉长为
的
倍得到如图3,求
的值.
已知抛物线.
(1)求证:无论为任何实数,抛物线与x轴总有两个交点;
(2)若为整数,当关于x的方程
的两个有理数根都在
与
之间(不包括-1、
)时,求
的值.
(3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象
,再将图象
向上平移
个单位,若图象
与过点(0,3)且与x轴平行的直线有4个交点,直接写出n的取值范围是.
问题:如果存在一组平行线,请你猜想是否可以作等边三角形
使其三个顶点分别在
上.
小明同学的解答如下:如图1所示,过点作
于
,作
,且
,过点
作
交直线
于点
,在直线
上取点
使
,则
为所求.
(1)请你参考小明的作法,在图2中作一个等腰直角三角形使其三个顶点分别在
上,点
为直角顶点;
(2)若直线之间的距离为1,
之间的距离为2,则在图2中,
,在图1中,
.
甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:
(1)求甲学校学生获得100分的人数,并补全统计图;
(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.