游客
题文

(2014年广西桂林12分)如图,已知抛物线y=ax2+bx+4与x轴交于A(,0)、B两点,与y轴交于C点,其对称轴为直线x=1.

(1)直接写出抛物线的解析式       
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

解方程:

小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).

阅读下面的材料,先完成阅读填空,再将要求答题:
,则;①
,则;②
,则.③
……
观察上述等式,猜想:对任意锐角,都有.④
(1)如图,在锐角三角形中,利用三角函数的定义及勾股定理对证明你的猜想

已知:为锐角,求

将进货单价为30元的商品按40元出售时,每天卖出500件。据市场调查发现,如果这种商品每件涨价1元,其每天的销售量就减少10件。
(1)要使得每天能赚取8000元的利润,且尽量减少库存,售价应该定为多少?
(2)售价定为多少时,每天获得的利润最大?最大利润为多少?

已知:关于x的方程kx2-(3k-1)x+2(k-1)=0
(1)求证:无论k为何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且,求k的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号