游客
题文

(2014年广西河池12分)如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.

(1)抛物线的解析式是       
(2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值;
(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C与欲到达地点B偏离50米,结果他在水中实际游的路程比河的宽度多10米,求:该河的宽度AB为多少米?

我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积为1,直角三角形的两直角边分别为a,b,你能求(a+b)2的值吗?若能,求其值;若不能,请说明理由.

(1)如图中图(1),已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)
(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD.BE与CD有什么数量关系?简单说明理由.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图(3),要测量池塘两岸相对的两点B,E间的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

在Rt△ABC中,已知斜边长c=40,a︰b=3︰4,求两条直角边的长.

小明想知道学校旗杆的高度,他把绳子一端挂在旗杆顶端,发现绳子垂到地面时还余1m;当他把绳子下端拉开5m后,绳子下端刚好接触地面,如图,你能帮他求出旗杆的高度吗?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号