(本小题满分12分)已知椭圆:的右焦点和上顶点在直线上,、为椭圆上不同两点,且满足.(1)求椭圆的标准方程;(2)证明:直线恒过定点.
已知以点为圆心的圆经过点和,且圆心在直线上. (1)求圆的方程; (2)设点在圆上,求的面积的最大值.
已知一个几何体的三视图如图所示. (1)求此几何体的表面积; (2)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.
已知圆:内有一点,过点作直线交圆于,两点. (1)当经过圆心时,求直线的方程; (2)当弦被点平分时,写出直线的方程.[
已知,. (1)求和; (2)定义且,求和.
已知函数在区间和上单调递增,在上单调递减,其图象与轴交于三点,其中点的坐标为. (1)求的值; (2)求的取值范围; (3)求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号