已知:y关于x的函数的图象与x轴有交点。
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足.
①求k的值;②当时,请结合函数图象确定y的最大值和最小值。
如图,平面内有A,B,C,D四点,按下列语句画图.
(1)画射线AB,直线BC,线段AC;
(2)连接AD与BC相交于点E.
先化简,再求值:2m-{7n+[4m-7n-2(m-2n-3m)]-3m},其中 m=-3,n=2.
.
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.
(1)判断MN与AC的位置关系;
(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;
(3)若△DMN是等腰三角形,求t的值.
如图1,AB为⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.
(1)若CD=2,BP=4,求⊙O的半径;
(2)求证:直线BF是⊙O的切线;
(3)当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?请在图2中补全图象并证明你的结论.