如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当t为何值时,DQ=2AD?
(3)求线段QC所在直线与⊙P相切时t的值。
如图,一次函数 、 为常数, 的图象与 轴、 轴分别交于 、 两点,且与反比例函数 为常数且 的图象在第二象限交于点 , 轴,垂足为 ,若 .
(1)求一次函数与反比例函数的解析式;
(2)求两个函数图象的另一个交点 的坐标;
(3)请观察图象,直接写出不等式 的解集.
如图,已知边长为10的正方形 , 是 边上一动点(与 、 不重合),连结 , 是 延长线上的点,过点 作 的垂线交 的角平分线于点 ,若 .
(1)求证: ;
(2)若 ,求 的面积;
(3)请直接写出 为何值时, 的面积最大.
某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)
从某校初三年级中随机抽查若干名学生摸底检测的数学成绩(满分为120分),制成如图的统计直方图,已知成绩在 分(含80分,不含90分)的学生为抽查人数的 ,且规定成绩大于或等于100分为优秀.
(1)求被抽查学生人数及成绩在 分的学生人数 ;
(2)在被抽查的学生中任意抽取1名学生,则这名学生成绩为优秀的概率;
(3)若该校初三年级共有300名学生,请你估计本次检测中该校初三年级数学成绩为优秀的人数.
(1)计算: ;
(2)先化简 ,再从 ,0,1中选择合适的 值代入求值.