在平面直角坐标系中,已知抛物线(a,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(﹣4,3),直角顶点B在第二象限。
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标。
已知:如图所示,在矩形ABCD中,EF⊥AC分别交DC、AB于点E、F,CF∥AE,CF平分∠ACB.
(1)求证:△AOE≌△CBF;
(2)试说明:如何把△AOE进行合适的变换得到△CBF?
如图,在矩形ABCD中,点E在AD上,点F在BC上,EC平分∠BED,DF=DA.
(1)求证:△BEC是等腰三角形.
(2)求证:四边形BFDE是平行四边形.
如图,四边形ABCD是矩形,P是BC边上的一点,连接PA、PD,求证:PA2+PC2=PB2+PD2.
如图1,在▱ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交DC延长线于E.
(1)在图1中,证明AF=EC;
(2)若∠BAD=90°,G为CF的中点(如图2),判断△BEG的形状,并证明.
如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE
(1)求证:四边形OGCH是平行四边形.
(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度.