如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABCD与S四边形ECDF的大小关系是( )
A.S四边形ABDC=S四边形ECDF | B.S四边形ABDC<S四边形ECDF |
C.S四边形ABDC=S四边形ECDF+1 | D.S四边形ABDC=S四边形ECDF+2 |
(2014年江苏常州2分)在平面直角坐标系中,直线经过点A(-3,0),点B(0,
),点P的坐标为(1,0),与
轴相切于点O,若将⊙P沿
轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有()
A.1个 | B.2个 | C.3个 | D.4个 |
(2014年湖南株洲3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()
A.(66,34) | B.(67,33) | C.(100,33) | D.(99,34) |
(2014年湖南益阳4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()
A.1 | B.1或5 | C.3 | D.5 |
(2014年湖南常德3分)阅读理解:如图甲,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.
应用:在图乙的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()
A.(60°,4) | B.(45°,4) |
C.![]() |
D.![]() |
(2014年湖北天门学业3分)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程 S (米)与所用时间 t (秒)之间的函数图象分别为线段OA和折线OBCD . 下列说法正确的是()
A. 小莹的速度随时间的增大而增大
B. 小梅的平均速度比小莹的平均速度大
C. 在起跑后 180 秒时,两人相遇
D. 在起跑后 50 秒时,小梅在小莹的前面