选修4-4:坐标系与参数方程选讲
在直角坐标系中,曲线
的参数方程为
(
为参数),以原点为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
(1)求曲线的普通方程与曲线
的直角坐标方程;
(2)设点,曲线
与曲线
交于
,求
的值.
(本小题满分12分)在平面直角坐标系xoy中,已知抛物线C:x上横坐标为4的点到该抛物线的焦点的距离为5。
(1)求抛物线C的标准方程;
(2)过点M(1,0)作直线交抛物线C于A、B两点,求证:
+
恒为定值。
(12分) 已知在正方体ABCD —A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG =.
(1)求证:EF⊥B1C;
(2)求EF与G C1所成角的余弦值;
(本小题满分12分)
给定两个命题, :对任意实数
都有
恒成立;
:关于
的方程
有实数根.如果
∨
为真命题,
∧
为假命题,求实数
的取值范围.
已知直线与椭圆
相交于
、
两点,
是线段
上的一点,
,且点M在直线
上
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆
上,求椭圆的方程。
某商品每件成本9元,售价30元,每星期卖出432件。如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比。已知商品单价降低2元时,一个星期多卖出24件。
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?