(本小题满分14分)如图,已知等腰梯形中,
是
的中点,
,将
沿着
翻折成
,使平面
平面
.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点P,使得
平面
,若存在,求出
的值;若不存在,说明理由.
已知抛物线的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点作直线
交抛物线于
,
两点,求证:
.
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(1)证明:AB=AC;
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
已知等差数列的前
项和为
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求数列
的前
项和.
椭圆的离心率是
,它被直线
截得的弦长是
,求椭圆的方程.
已知命题p:方程有两个不相等的实根;Q:不等式
的解集为R;若p或Q为真,p且Q为假,求实数M的取值范围.