(本小题满分12分)
在中,角
为锐角,记角
所对的边分别为
,设向量
,且
与
的夹角为
.
(Ⅰ)计算的值并求角
的大小;
(Ⅱ)若,求
的面积
.
已知数列的前n项和为
满足:
.
(1)求证:数列是等比数列;
(2)令,对任意
,是否存在正整数m,使
都成立?若存在,求出m的值;若不存在,请说明理由.
设平面向量,
,函数
.
(1)当时,求函数
的取值范围;
(2)当,且
时,求
的值.
已知函数,
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论;
(2)设函数若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.
已知数列,
满足
,
,
,数列
的前
项和为
,
.
(1)求数列的通项公式;
(2)求证:;
(3)求证:当时,
.
一个如图所示的不规则形铁片,其缺口边界是口宽4分米,深2分米(顶点至两端点所在直线的距离)的抛物线形的一部分,现要将其缺口边界裁剪为等腰梯形.
(1)若保持其缺口宽度不变,求裁剪后梯形缺口面积的最小值;
(2)若保持其缺口深度不变,求裁剪后梯形缺口面积的最小值.