(本小题满分12分)已知函数,
(Ⅰ)若在点(1,f(1))处的切线与x轴平行,求实数
的值及
的单调区间;
(Ⅱ)当时,存在两点
,使得曲线
在这两点处的切线互相平行,求证
。
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马
中,侧棱
底面
,且
,点
是
的中点,连接
.
(Ⅰ)证明:
平面
. 试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马
的体积为
,四面体
的体积为
,求
的值.
设等差数列
的公差为
,前
项和为
,等比数列
的公比为
.已知
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)当
时,记
,求数列
的前
项和
.
某同学用"五点法"画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数
的解析式;
(Ⅱ)将
图象上所有点向左平行移动
个单位长度,得到
图象,求
的图象离原点
最近的对称中心.
已知数列
的各项均为正数,
,
为自然对数的底数.
(Ⅰ)求函数
的单调区间,并比较
与
的大小;
(Ⅱ)计算
,由此推测计算
的公式,并给出证明;
(Ⅲ)令
,数列
,
的前
项和分别记为
, 证明:
.
一种作图工具如图1所示.
是滑槽
的中点,短杆
可绕
转动,长杆
通过
处铰链与
连接,
上的栓子
可沿滑槽
滑动,且
,
.当栓子
在滑槽
内作往复运动时,带动
绕
转动一周(
不动时,
也不动),
处的笔尖画出的曲线记为
.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线
的方程;
(Ⅱ)设动直线
与两定直线
和
分别交于
两点.若直线
总与曲线
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.