如图,在平面直角坐标系中,已知点A(4,0),点B(0,3) 点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发
(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点 在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形?若存在,试求出这时tan∠ABC的值;若不存在,试说明理由
直角三角板ABC中,∠A=30°,BC=2 将其绕直角顶点C逆时针旋转一个角(
且
≠ 90°),得到Rt△
,
(1)如图1,当边经过点B时,求旋转角
的度数;
(2)在三角板旋转的过程中,边与AB所在直线交于点D,过点 D作DE∥
交
边于点E,联结BE
①当时,设
,
,求
与
之间的函数解析式及
取值范围;
②当时,求
的长
(本小题满分8 分)如图1,某商场有一双向运行的自动扶梯,扶梯上行和下行的速度保持不变且相同,甲、乙两人同时站上了此扶梯的上行和下行端,甲站上上行扶梯的同时又以0 8 m/s的速度往上跑,乙站上下行扶梯后则站立不动随扶梯下行,两人在途中相遇,甲到达扶梯顶端后立即乘坐下行扶梯,同时以0 8 m/s的速度往下跑,而乙到达底端后则在原地等候甲 图2中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(m)与所用时间x(s)之间的部分函数关系,结合图象解答下列问题:
(1)点B的坐标是;
(2)求AB所在直线的函数关系式;
(3)乙到达扶梯底端后,还需等待多长时间,甲才到达扶梯底端?
如图,△ABC中,AC=BC,以BC上一点O为圆心,OB为半径作⊙O交AB于点D已知经过点D的⊙O切线恰好经过点C
(1)试判断CD与AC的位置关系,并证明;
(2)若△ACB∽△CDB,且AC=3,求图中阴影部分的面积
耘耙是一种清除水稻成长期缝隙间杂草的传统农具,大小款式不一,图1
是其中的一种,图2是其示意图,现测得AC=40cm,∠C=30°,∠BAC=45° 为了使耘耙更加牢固,AB处
常用铁条制成,则制作此耘耙时需准备多长的铁条?(结果保留根号)