(本题满分14分,第(1)、(2)小题各3分;第(3)、(4)小题各4分)请你指出函数的基本性质(不必证明),并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明.(1)当时,等式恒成立;(2)若,则一定有;(3)若,方程有两个不相等的实数解;(4)函数在上有三个零点.
已知函数,其中常数. (1)令,求函数的单调区间; (2)令,将函数的图像向左平移个单位,再往上平移个单位,得到函数的图像.对任意的,求在区间上零点个数的所有可能值.
已知点,动点P 满足:|PA|=2|PB|. (1)若点P的轨迹为曲线,求此曲线的方程; (2)若点Q在直线l1: x+y+3=0上,直线l2经过点Q且与曲线只有一个公共点M,求|QM|的最小值.
已知圆心为C的圆经过点和,且圆心C在直线:上,求圆心为C的圆的标准方程.
已知函数, (1) 化简 并求的振幅、相位、初相; (2) 当时,求f(x)的最小值以及取得最小值时x的集合.
已知α,β都是锐角,,, .
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号