已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
某饰品店老板去批发市场购买新款手链,第一次购手链共用100元,回来后该手链按定价2.8元销售,并很快售完.由于该手链深得“潮女”喜爱十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出时,出现滞销,便以定价的5折售完剩余手链.(手链销售中不考虑其它因素)
(1)求第一次该手链的批发价;
(2)试问该老板第二次销售手链是赔钱了,还是赚钱了?用数据说明.
如图,已知△ABC中,∠ABC=135°,过B作AB的垂线交AC于点P,若,PB=2,求BC的长.
九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,
月均用水量![]() |
频数(户) |
频率 |
![]() |
6 |
0.12 |
![]() |
0.24 |
|
![]() |
16 |
0.32 |
![]() |
10 |
0.20 |
![]() |
4 |
|
![]() |
2 |
0.04 |
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过20t的家庭大约有多少户?
一个不透明的布袋里装有红、黄、绿三种颜色的球(除颜色不同,其它均无任何区别),其中红球2个,黄球1个,从袋中任意摸出一个球是红球的概率是.
(1)求布袋中绿球的个数;
(2)第一次从袋中任意摸出一个球,记下颜色后放回袋中,第二次再摸出一个球记下颜色,请用画树状图或列表的方法求两次都摸到红球的概率.
如图,在△ABC中,∠B=∠C,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.求证:
(1)△BDE≌△CDF;
(2)当△ABC是直角三角形时,试判断四边形AEDF的形状.