已知直线
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)将曲线
的极坐标方程化为直角坐标方程;
(2)设点
的直角坐标为
,直线
与曲线
的交点为
,求
的值.
已知函数.
(1)若,求函数
的单调区间;
(2)若关于x的不等式在区间[1,2]上有解,求m的取值范围;
(3)设是函数
的导函数,
是函数
的导函数,若函数
的零点为
,则点
恰好就是该函数
的对称中心.若m=1,试求
的值.
设是椭圆
上的两点,已知向量
,若
且椭圆的离心率
,短轴长为2,O为坐标原点.
(Ⅰ) 求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)判定 AE与PD是否垂直,并说明理由;
(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.
已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,且;
(Ⅰ)求∠B;
(Ⅱ)求函数的值域及单调递减区间.
已知,
.
(1)若,求实数m的值;
(2)若p是的充分条件,求实数m的取值范围.