已知函数 f ( x ) = 2 x , g ( x ) = x 2 + a x (其中 a ∈ R ).对于不相等的实数 x 1 , x 2 ,设 m = f ( x 1 ) - f ( x 2 ) x 1 - x 2 , n = g ( x 1 ) - g ( x 2 ) x 1 - x 2 ,现有如下命题: ①对于任意不相等的实数 x 1 , x 2 ,都有 m > 0 ; ②对于任意的 a 及任意不相等的实数 x 1 , x 2 ,都有 n > 0 ; ③对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = n ; ④对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = - n . 其中真命题有(写出所有真命题的序号).
已知(为常数),在上有最小值,那么在上的最大值是
.
函数的单调递增区间是_____________.
已知圆C过点(1,0),且圆心在x轴的正半轴上,直线被圆C所截得的弦长为为,则过圆心且与直线垂直的直线的方程为____________.
已知函数的图象与函数的图象恰有两个交点,则实数的取值范围是______________.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号