已知函数 f ( x ) = 2 x , g ( x ) = x 2 + a x (其中 a ∈ R ).对于不相等的实数 x 1 , x 2 ,设 m = f ( x 1 ) - f ( x 2 ) x 1 - x 2 , n = g ( x 1 ) - g ( x 2 ) x 1 - x 2 ,现有如下命题: ①对于任意不相等的实数 x 1 , x 2 ,都有 m > 0 ; ②对于任意的 a 及任意不相等的实数 x 1 , x 2 ,都有 n > 0 ; ③对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = n ; ④对于任意的 a ,存在不相等的实数 x 1 , x 2 ,使得 m = - n . 其中真命题有(写出所有真命题的序号).
在中,为边上一点,,,.若的面积为,则________.
设当时,函数取得最大值,则________.
函数的最大值为________.
在中,,,则的最大值为_______.
已知F1、F2是双曲线的两焦点,过F2且垂直于实轴的直线交双曲线于P、Q两点,∠PF1Q=60°,则离心率e=______________.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号