如图,在四棱柱 A B C D - A 1 B 1 C 1 D 1 中,侧棱 A 1 A ⊥ 底面 A B C D , A B ⊥ A C , A B = 1 , A C = A A 1 = 2 , A D = C D = 5 ,且点M和N分别为 B 1 C 和 D 1 D 的中点.
(Ⅰ)求证: M N ∥ 平面 A B C D ; (Ⅱ)求二面角 D 1 - A C - B 1 的正弦值; (Ⅲ)设 E 为棱 A 1 B 1 上的点,若直线 N E 和平面 A B C D 所成角的正弦值为 1 3 ,求线段 A 1 E 的长
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为. (1)求棱的长; (2)求点到平面的距离.
关于的不等式的解集为。 (1)求实数的值; (2)若实系数一元二次方程的一个根,求.
设等比数列都在函数的图象上。 (1)求r的值; (2)当; (3)若对一切的正整数n,总有的取值范围。
设,函数,其中是自然对数的底数。 (1)判断在R上的单调性; (2)当时,求在上的最值。
直线与圆交于、两点,记△的面积为(其中为坐标原点). (1)当,时,求的最大值; (2)当,时,求实数的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号