如图,在边长为4的正方形中,点
在
上从
向
运动,连接
交
于点.
⑴试证明:无论点运动到
上何处时,都有△
≌△
;
⑵当点在
上运动到什么位置时,△
的面积是正方形
面积的
;
⑶若点从点
运动到点
,再继续在
上运动到点
,在整个运动过程中,当点
运动到什么位置时,△
恰为等腰三角形.
观察下列各式及验证过程:
……
⑴按照上述三个等式及验证过程中的基本思想,猜想的变形结果并进行验证.
⑵针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,无须证明.
已知,如图□ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD交于0点,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F
⑴求证:AF=EC;
⑵在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点0顺时针旋转的度数。
如图,把长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在点C′的位置上.
⑴若∠1=50°,求∠2、∠3的度数;
⑵若AB=7,DE=8,求CF的长度.
如图,在梯形ABCD中,AB∥DC, DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
⑴求证:梯形ABCD是等腰梯形.
⑵若∠BDC=30°,AD=5,求CD的长.