(本小题满分12分)已知函数.
(1)若函数的图象在
处的切线斜率为2,求函数
的图象在
的切线方程;
(2)若函数在
上是减函数,求实数a的取值范围.
已知,其中
,
,
.
(Ⅰ)求的单调递减区间;
(Ⅱ)在中,角
所对的边分别为
,
,
,且向量
与
共线,求边长
和
的值.
选修:不等式选讲
设.
(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足
,试求实数
的取值范围.
选修:坐标系与参数方程
在平面直角坐标系中,直线
经过点
,其倾斜角是
,以原点
为极点,以
轴的非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程是
.
(Ⅰ)若直线和曲线
有公共点,求倾斜角
的取值范围;
(Ⅱ)设为曲线
任意一点,求
的取值范围.
选修:几何证明选讲
如图,过点作圆
的割线
与切线
,
为切点,连接
,
的平分线与
分别交于点
,其中
.
(Ⅰ)求证:;
(Ⅱ)求的大小.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求
的值.