(本小题满分13分) 在平面直角坐标系中,点
与点
关于原点
对称,
是动点,且直线
与
的斜率之积等于
.
(1)求动点的轨迹方程;
(2)设直线和
与直线
分别交于
两点,问:是否存在点
使得
与
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.
已知a=3,c=2,B=150°,求边b的长及S△。
已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.
求证:△ABC是等边三角形。
已知椭圆C的对称中心为原点O,焦点在轴上,左右焦点分别为
,且
=2点
在该椭圆上。
(I)求椭圆C的方程;
(II)过的直线
与椭圆C相交于A,B两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程。
已知函数,其中
为常数,且
。
(I)当时,求
在
(
)上的值域;
(II)若对任意
恒成立,求实数
的取值范围。
如图,在三棱柱中,侧面
底面ABC,
,
,且
为AC中点。
(I)证明:平面ABC;
(II)求直线与平面
所成角的正弦值;
(III)在上是否存在一点E,使得
平面
,若不存在,说明理由;若存在,确定点E的位置。