在一次数学竞赛中,10名学生的成绩(单位:分)分别为70,90,80,50,80,80,60,100,90,80.求这些学生的平均成绩.
2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)这次被调查的同学共有 人;
(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;
(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.
先化简,再求值: ,其中 .
(1)计算: ;
(2)解不等式组: .
如图,已知抛物线 过点 , , ,其顶点为 .
(1)求抛物线的解析式;
(2)设点 ,当 的值最小时,求 的值;
(3)若 是抛物线上位于直线 上方的一个动点,求 的面积的最大值;
(4)若抛物线的对称轴与直线 相交于点 , 为直线 上任意一点,过点 作 交抛物线于点 ,以 , , , 为顶点的四边形能否为平行四边形?若能,求点 的坐标;若不能,请说明理由.
如图,在 中,直径 经过弦 的中点 ,点 在 上, 的延长线交 于点 ,交过 的直线于 , ,连接 与 交于点 .
(1)求证: 是 的切线;
(2)若点 是 的中点, 的半径为3, ,求 的长.