(本小题满分12分)已知函数
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)求函数的极值。
本题14分)已知动圆过点
,且与圆
相内切.
(1)求动圆的圆心
的轨迹方程;
(2)设直线(其中
与(1)中所求轨迹交于不同两点
,
,与双曲线
交于不同两点
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
(本题14分)已知点(1,)是函数
且
)的图象上一点,等比数列
的前
项和为
,数列
的首项为
,且前
项和
满足
-
=
+
(
).
(1)求数列和
的通项公式;
(2)若数列{前
项和为
,问
的最小正整数
是多少? .
(本题14分)如图,在四棱锥中,底面
是边长为1的菱形,
,
,
,
为
的中点,
为
的中点.
(Ⅰ)证明:;
(Ⅱ)求异面直线与
所成角的大小;
(Ⅲ)求点到平面
的距离.
(本题14分)某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
若(本题12分)在△ABC中,,
,
分别为内角A, B, C的对边,且
(Ⅰ)求A的大小;(Ⅱ)求的最大值.