2015“两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为 ;方案二中,当0≤x≤100时,y与x的函数关系式为 ,当x>100时,y与x的函数关系式为 ;
(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?
解不等式组:,并把它的解集在数轴上表示出来。
(本题满分14分,第(1)、(2)小题每小题满分5分,第(3)小题
满分4分)
已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,联结MF交线段AD于点P,联结NP,设正方形BEFG的边长为x,正方形DMNK的边长为y,
(1)求y关于x的函数关系式及自变量x的取值范围;
(2)当△NPF的面积为32时,求x的值;
(3)以P为圆心,AP为半径的圆能否与以G为圆心,GF为半径的圆相切,若能请求x的值,若不能,请说明理由。
(本题满分12分,每小题满分各6分)
已知:直角坐标系xoy中,将直线沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线
与
轴交于A,B两点(点A在点B的右侧),且经过点C,(1)求直线
及抛物线的解析式;(2)设抛物线的顶点为
,点
在抛物线的对称轴上,且
,求点
的坐标;
(本题14分)如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于C点,顶点为D.过点C、D的直线与x轴交于E点,以OE为直径画⊙O1,交直线CD于P、E两点.
(1)求E点的坐标;
(2)联结PO1、PA.求证:~
;
(3) ①以点O2 (0,m)为圆心画⊙O2,使得⊙O2与⊙O1相切,当⊙O2经过点C时,求实数m
的值;
②在①的情形下,试在坐标轴上找一点O3,以O3为圆心画⊙O3,使得⊙O3与⊙O1、⊙O2同时相切.直接写出满足条件的点O3的坐标(不需写出计算过程).
(本题12分)
如图,AD//BC,点E、F在BC上,∠1=∠2,AF⊥DE,垂足为点O.
(1)求证:四边形AEFD是菱形;
(2)若BE=EF=FC,求∠BAD+∠ADC的度数;
(3)若BE=EF=FC,设AB = m,CD = n,求四边形ABCD的面积.