在如图所示的光滑水平面上,小明站在静止的小车上用力向右推静止的木箱,木箱以速度v向右匀速运动。巳知木箱的质量为m.人与车的质量为2m。木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住。求:
①推出木箱后小明和小车一起运动的速度v1的大小;
②小明接住木箱后三者一起运动的速度v2的大小。
一列简谐横波沿x 轴负方向传播,图1是t ="1s" 时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同一时间起点),则图2可能是图1中哪个质元的振动图线?( )
| A.x=0处的质元 | B.x=1m处的质元 |
| C.x=2m处的质元 | D.x=3m处的质元 |
图甲是一定质量的气体由状态A经过状态B变为状态C的p-T图象.已知气体在状态A时的体积是0.6 m3.
(1)根据图象提供的信息,计算图中TA的温度值;
(2)请在图乙坐标系中,作出由状态A经过状态B变为状态C的V-T图象,并在图线相应位置上标出字母A、B、C.如果需要计算才能确定有关值,请写出计算过程.
如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为2kg的长板车,车置于光滑的水平面上,在车左端放置一质量为1kg带电量为q=1×10-2C的绝缘小货物B,在全部传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,车和货物开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,关闭电场时车右端正好到达目的地,货物到达车的最右端,且车和货物的速度恰好为零.已知货物与车间的动摩擦因数µ=0.1,(车不带电,货物体积大小不计,g取10m/s2)求:
⑴第二次电场作用的时间;
⑵车的长度.
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为 h ,速度方向是水平的,速度大小为 v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为r0的均匀球体。
在图甲中,直角坐标系0xy的1、3象限内有匀强磁场,第1象限内的磁感应强度大小为2B,第3象限内的磁感应强度大小为B,磁感应强度的方向均垂直于纸面向里.现将半径为l,圆心角为900的扇形导线框OPQ以角速度ω绕O点在纸面内沿逆时针匀速转动,导线框回路电阻为R.
(1)求导线框中感应电流最大值.
(2)在图乙中画出导线框匀速转动一周的时间内感应电流I随时间t变化的图象.(规定与图甲中线框的位置相对应的时刻为t=0)
(3)求线框匀速转动一周产生的热量.