游客
题文

如图所示,AKD为竖直平面内固定的光滑绝缘轨道,轨道间均平滑连接,AK段水平,其间分布有一水平向右的匀强电场I。PQ为同一竖直面内的固定光滑水平轨道。自D点向右宽度L=0.7m的空间,分布有水平向右、场强大小E=1.4×105N/C的匀强电场II。质量m2=0.1kg、长度也为L的不带电绝缘平板,静止在PQ上并恰好处于电场II中,板的上表面与弧形轨道相切于D点。AK轨道上一带正电的小物体从电场I的左边界由静止开始运动,并在D点以速度v=1m/s滑上平板。已知小物体的质量m1=10-2kg,电荷量q=+10-7C,与平板间的动摩擦因数,AK与D点的垂直距离为h=0.3m,小物体离开电场II时速度比平板的大、小物体始终在平板上。设小物体电荷量保持不变且视为质点,取g=10m/s2。求:

(1)电场I左右边界的电势差;
(2)小物体从离开电场II开始,到平板速度最大时,所需要的时间。

科目 物理   题型 计算题   难度 较难
知识点: 放射性同位素的应用
登录免费查看答案和解析
相关试题

汤姆逊用来测定电子的比荷实验装置如下:真空管内的阴极C发出电子,(不计初速,重力和电子间相互作用), 经过A、B间的电场加速后,穿过A、B的中心小孔沿中心轴O/O的方向进入到两块水平正对的长度为L的平行极板D和E间的区域,当极板间不加偏转电压时,电子束打在荧光屏的中心O点,形成一个亮点;若在D、E间加上方向向下、场强为E的匀强电场,电子将向上偏转;如果再利用通电线圈在D、E电场区加上一垂直纸面的匀强磁场(图中未画出),调节磁场的强弱,当磁感应强度的大小为B时,荧光斑恰好回到荧光屏中心。接着再去掉电场,电子向下偏转,偏转角为φ。如图所示,求(1)在图中画出磁场B的方向(2)根据L、E、B和φ,推导电子的比荷的表达式。

在某介质中形成一列简谐横波,该横波上有相距4m的A、B两点,下图所示为A、B两质点的振动图象,若这列波的波长大于2m,求:这列波的波速。

如图所示,质量为M的木框内静止在地面上,劲度系数为k的轻质弹簧一端固定于木框,一质量为m的小球放在该弹簧上,让小球在同一条竖直线上作简谐运动,在此过程中木框始终没有离开地面。若使小球始终不脱离弹簧,则:
(1)小球的最大振幅A是多大?
2)在这个振幅下木框对地面的最大压力是多少?
(3)在这个振幅下弹簧的最大弹性势能是多大?

如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为,导轨间距为l,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度大小为B,方向垂直于斜面向上。如图所示,将甲、乙两阻值相同,质量均为m的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l。从静止释放两金属杆的同时,在金属杆上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小以,乙金属杆刚进入磁场时做匀速运动。
(1)求每根金属杆的电阻R为多少?
(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F随时间t的变化关系式,并说明F的方向。
(3)若从开始释放到两杆到乙金属杆离开磁场,乙金属杆共产生热量Q,试求此过程中外力F对甲做的功。

如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看做重合。现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放。
(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?
(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求此h的值。(取g=10m/s2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号