如图,C是以AB为直径的上一点,过点O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.
(1)求证:PC是⊙O的切线;
(2)若AF=1,OA=, 求PC的长。
如图1,抛物线 过 、 两点,交 轴于点 ,过点 作 轴的平行线与抛物线上的另一个交点为 ,连接 、 .点 是该抛物线上一动点,设点 的横坐标为 .
(1)求该抛物线的表达式和 的正切值;
(2)如图2,若 ,求 的值;
(3)如图3,过点 、 的直线与 轴于点 ,过点 作 ,垂足为 ,直线 与 轴交于点 ,试判断四边形 的形状,并说明理由.
在 中, , ,以 为边在 的另一侧作 ,点 为射线 上任意一点,在射线 上截取 ,连接 、 、 .
(1)如图1,当点 落在线段 的延长线上时,直接写出 的度数;
(2)如图2,当点 落在线段 (不含边界)上时, 与 交于点 ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若 ,求 的最大值.
如图,直线 与 轴交于点 ,与 轴交于点 .将线段 先向右平移1个单位长度、再向上平移 个单位长度,得到对应线段 ,反比例函数 的图象恰好经过 、 两点,连接 、 .
(1)求 和 的值;
(2)求反比例函数的表达式及四边形 的面积;
(3)点 在 轴正半轴上,点 是反比例函数 的图象上的一个点,若 是以 为直角边的等腰直角三角形时,求所有满足条件的点 的坐标.
某校开设了“ ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.
校本课程 |
频数 |
频率 |
|
36 |
0.45 |
|
|
0.25 |
|
16 |
|
|
8 |
|
合计 |
|
1 |
请您根据图表中提供的信息回答下列问题:
(1)统计表中的 , ;
(2)“ ”对应扇形的圆心角为 度;
(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“ ”、“ ”、“ ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
如图 是 的直径, 与 相切于点 , 与 相交于点 , 为 上的一点,分别连接 、 , .
(1)求 的度数;
(2)若 ,求 的长度.