(本小题满分12分)如下图所示,从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图,观察图形,回答下列问题:
(Ⅰ)这一组的频率和频数分别为多少?
(Ⅱ)估计这次环保知识竞赛的平均成绩。
抛物线M:的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,=45
,O是BC的中点,AO=
,且BC=6,AD=AE=2CD=2
,
(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段 |
[50,70) |
[70,90) |
[90,110) |
[110,130) |
[130,150) |
总计 |
频数 |
b |
|||||
频率 |
a |
0.25 |
(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.
已知函数的图象过点(0,
),最小正周期为
,且最小值为-1.
(1)求函数的解析式.
(2)若,
的值域是
,求m的取值范围.
等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn=,求数列{bn}的前n项和Tn.