在直角坐标系中,已知点P是反比例函数
(
>0)图象上一个动点,以P为圆心的圆始终与
轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.
如图1,四边形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=,BC=5
,动点P从点D出发,以1cm/s的速度沿DB方向运动,动点Q也从点D出发,以
/
的速度沿DC方向运动,P,Q两点同时出发,当点Q到达点C时停止运动,点P也随之停止,设运动时间为
(
>0).
(1)求线段DB的长;
(2)请判断PQ与BC的位置关系,并加以证明;
(3)伴随P,Q两点的运动,将△DPQ绕点P旋转,得到△PMN,点M落在线段PQ上,若△PMN
与△DBC的重叠部分的图形周长为y,
①请求出y与之间的函数关系式,并指出自变量
的取值范围;
②求出当4<y≤5时的取值范围.
如图,矩形ABCD中,AB=6,BC=10,点P在边BC上,点Q在边CD上,
(1)如图1,将△ADQ沿AQ折叠,点D恰好与点P重合,求CQ的长;
(2)如图2,若CQ=2,且△ABP与△PCQ相似,求BP的长;
(3)若点Q是CD边上的一点,且BC上不存在满足AP⊥PQ的点P,请探究:此时CQ的长必须满足什么条件?
某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.
(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);
(2)求小明到达点F时的影长FH的长.
己知:如图,在菱形ABCD中,点M、N分别在边AD、AB,∠DCM=∠BCN,CN与BD交于点E.
(1)求证:DM=BN;
(2)当四边形MNBE是平行四边形时,求证:.
在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2∶1.
(3)请写出(2)中放大后的△A2B2C2中A2B2边的中点P的坐标..