为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计.以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.
组别 |
分组 |
频数 |
频率 |
1 |
|
9 |
0.18 |
2 |
|
|
|
3 |
|
20 |
0.40 |
4 |
|
0.08 |
|
5 |
|
2 |
|
合计 |
请根据以上频率分布表和频率分布直方图,回答下列问题:
(1)求出 、 、 、 的值;
(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?
(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:五位同学请用 、 、 、 、 表示,其中小明为 ,小敏为 )
(1)已知 与 是同类项,求 、 的值;
(2)先化简后求值: ,其中 .
已知:如图,在矩形 中, , ,对角线 , 交于点 .点 从点 出发,沿 方向匀速运动,速度为 ;同时,点 从点 出发,沿 方向匀速运动,速度为 ;当一个点停止运动时,另一个点也停止运动.连接 并延长,交 于点 ,过点 作 ,交 于点 .设运动时间为 ,解答下列问题:
(1)当 为何值时, 是等腰三角形?
(2)设五边形 的面积为 ,试确定 与 的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由;
(4)在运动过程中,是否存在某一时刻 ,使 平分 ?若存在,求出 的值;若不存在,请说明理由.
问题提出:如何将边长为 ,且 为整数)的正方形分割为一些 或 的矩形( 的矩形指边长分别为 , 的矩形)?
问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.
探究一:
如图①,当 时,可将正方形分割为五个 的矩形.
如图②,当 时,可将正方形分割为六个 的矩形.
如图③,当 时,可将正方形分割为五个 的矩形和四个 的矩形
如图④,当 时,可将正方形分割为八个 的矩形和四个 的矩形
如图⑤,当 时,可将正方形分割为九个 的矩形和六个 的矩形
探究二:
当 ,11,12,13,14时,分别将正方形按下列方式分割:
所以,当 ,11,12,13,14时,均可将正方形分割为一个 的正方形、一个 的正方形和两个 的矩形.显然, 的正方形和 的矩形均可分割为 的矩形,而 的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些 或 的矩形.
探究三:
当 ,16,17,18,19时,分别将正方形按下列方式分割:
请按照上面的方法,分别画出边长为18,19的正方形分割示意图.
所以,当 ,16,17,18,19时,均可将正方形分割为一个 的正方形、一个 的正方形和两个 的矩形.显然, 的正方形和 的矩形均可分割为 的矩形,而 的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些 或 的矩形.
问题解决:如何将边长为 ,且 为整数)的正方形分割为一些 或 的矩形?请按照上面的方法画出分割示意图,并加以说明.
实际应用:如何将边长为61的正方形分割为一些 或 的矩形?(只需按照探究三的方法画出分割示意图即可)
某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 (元)与月产销量 (个)满足如下关系:
月产销量 (个) |
|
160 |
200 |
240 |
300 |
|
每个玩具的固定成本 (元) |
|
60 |
48 |
40 |
32 |
|
(1)写出月产销量 (个)与销售单价 (元)之间的函数关系式;
(2)求每个玩具的固定成本 (元)与月产销量 (个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?