(本小题满分8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.请用列表或画树状图的方法求一次打开锁的概率.
(本题8分)如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求证:BC=DE;
(2)若∠A=40°,求∠BCD的度数.
(本题5分)已知:如图,∠1=∠2,∠C=∠D,AD=EC,△ABD≌△EBC吗?为什么?
(本题5分)如图,AC⊥BC,AD⊥BD,垂足分别为C、D,AC=BD,Rt△ABC与Rt△BAD全等吗?为什么?
如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.
(本题12分)在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).
例如,从A到B记为:A→B(+l,+3);从C到D记为:C→D(+1,-2),
回答下列问题:
(1)如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.
(2)若点A运动的路线依次为:A→M(+2,+3),M→N(+1,-1),
N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M、N、P、Q的位置.
(3)在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是 ;n与q满足的数量关系是 .