(本小题5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦,且圆心P到∠AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)。
(本小题满分10分) 如图,在△ABC中,,
,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DE∥AB,将正方形平移,使点D保持在AC上(D不与A重合),设
,正方形与△ABC重叠部分的面积为
.
(1)求与
的函数关系式并写出自变量
的取值范围;
(2)为何值时
的值最大?
(3)在哪个范围取值时
的值随
的增大而减小?
某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台.
(1)设每台冰箱降价元,商场每天销售这种冰箱的利润为
元,求
与
之间的函数关系式(不要求写自变量的取值范围).
(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?
如图,一次函数(
为常数,且
)的图像与反比例函数
的图像交于
,
两点.
(1)求一次函数的表达式;
(2)若将直线向下平移
个单位长度后与反比例函数的图像有且只有一个公共点,求
的值.
如图,A、B是两座现代化城市,C是一个古城遗址,C城在A城的北偏东30°方向,在B城的北偏西45°方向,且C城与A城相距120千米,B城在A城的正东方向,以C为圆心,以60千米为半径的圆形区域内有古迹和地下文物,现要在A、B两城市间修建一条笔直的高速公路.
(1)请你计算公路的长度.(结果保留根号)
(2)请你分析这条公路有没有可能是对古迹或文物赞成损毁.
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).