如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.
(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=,求线段OE的长.
在折纸这种传统手工艺术中,蕴含许多数学思想,我们可以通过折纸得到一些特殊图形.把一张正方形纸片按照图①~④的过程折叠后展开.
①②③④
(1)猜想四边形ABCD是什么四边形;
(2)请证明你所得到的数学猜想.
如图,在平面直角坐标系中,直线AB与
轴交于点A,与
轴交于点C(
,
),且与反比例 函数
在第一象限内的图象交于点B,且BD⊥
轴于点D,OD
.
(1)求直线AB的函数解析式;
(2)设点P是轴上的点,若△PBC的面积等于
,直接写出点P的坐标.
先化简,然后在不等式
>
的非负整数解中选一个使原式有意义的数代入求值.
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.