如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是正方形;
(2)判断直线EG是否经过一个定点,并说明理由;
(3)求四边形EFGH面积的最小值。
如图,在直角坐标平面内,为原点,点
的坐标为
,点
在第一象限内,
,
.
求:(1)点
的坐标;
(2)
的值.
已知:如图,若,且BD=2,AD=3,求BC的长。
解方程:
已知:在矩形中,
,
.分别以
所在直线为
轴和
轴,建立如图所示的平面直角坐标系.
是边
上的一个动点(不与
重合),过
点的反比例函数
的图象与
边交于点
.
(1)求证:
与
的面积相等;
(2)记
,求当
为何值时,
有最大值,最大值为多少
?
(3)请探索:是否存在这样的点
,使得将
沿
对折后,
点恰好落在
上?若存在,求出点
的坐标;若不存在,请说明理由.
如图,等边△ABC中,AO是∠BAC的角平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;
(2)延长BE至Q,P为BQ上一点,连接CP、CQ使CP=CQ=5,若BC=8时,求PQ的长.