(本小题满分12分)已知正方体的棱长为,分别是棱的中点,(Ⅰ)求正方体的内切球的半径与外接球的半径之比;(Ⅱ)求四棱锥的体积.
若在区间[-1,1]上单调递增,求的取值范围.
已知函数是上的可导函数,若在时恒成立. (1)求证:函数在上是增函数; (2)求证:当时,有.
设三次函数在处取得极值,其图象在处的切线的斜率为。求证:;
设,.令,讨论在内的单调性并求极值;
已知定义在正实数集上的函数,其中。设两曲线有公共点,且在公共点处的切线相同。 (1)若,求的值; (2)用表示,并求的最大值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号