(本小题满分12分)设数列的各项均为正数,它的前
项的和为
,且
,数列
满足
.其中
.
(Ⅰ)求数列和
的通项公式;
(Ⅱ)设,求证:数列
的前
项的和
(
).
(本小题满分14分)已知椭圆
(Ⅰ)求椭圆的离心率;
(Ⅱ)设椭圆上在第二象限的点
的横坐标为
,过点
的直线
与椭圆
的另一交点分别为
.且
的斜率互为相反数,
两点关于坐标原点
的对称点分别为
,求四边形
的面积的最大值.
(本小题满分13分)已知函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)设,且函数
在点
处的切线为
,直线
//
,且
在
轴上的截距为1.求证:无论
取任何实数,函数
的图象恒在直线
的下方.
(本小题满分14分)如图,在四棱锥中,底面
为直角梯形,
//
,
,平面
底面
,
为
的中点,
是棱
的中点,
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)求二面角的余弦值.
(本小题满分13分)
某农民在一块耕地上种植一种作物,每年种植成本为元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(Ⅰ)设表示该农民在这块地上种植1年此作物的利润,求
的分布列;
(Ⅱ)若在这块地上连续3年种植此作物,求这3年中第二年的利润少于第一年的概率.
(本小题满分13分)在中,角
所对的边分别为
,已知
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.