如图所示,光滑绝缘水平桌面上固定一绝缘挡板P,质量分别为mA和mB的小物块A和B(可视为质点)分别带有+QA和+QB,的电荷量,两物块由绝缘的轻弹簧相连,一不可伸长的轻绳跨过定滑轮,一端与物块B连接,另一端连接轻质小钩。整个装置处于正交的场强大小为E、方向水平向左的匀强电场和磁感应强度大小为B、方向水平向里的匀强磁场中。物块A、B开始时均静止,已知弹簧的劲度系数为K,不计一切摩擦及AB间的库仑力,物块A、B所带的电荷量不变,B不会碰到滑轮,物块A、 B均不离开水平桌面。若在小钩上挂一质量为M的物块C并由静止释放,可使物块A对挡板P的压力为零,但不会离开P,则
(1)求物块C下落的最大距离;
(2)求小物块C从开始下落到最低点的过程中,小物块B的电势能的变化量,以及弹簧的弹性势能变化量:
(3)若C的质量改为2M,求小物块A刚离开挡板P时小物块B的速度大小,以及此时小物块B对水平桌面的压力。
如图所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径r=0.2m的四分之一细圆管CD,管口D端正下方直立一根劲度系数为k=100N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐.一个质量为1kg的小球放在曲面AB上,现从距BC的高度为h=0.6m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C端时,它对上管壁有FN=2.5mg的相互作用力,通过CD后,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为Ep=0.5J.取重力加速度g=10m/s2.求:
(1)小球在C处受到的向心力大小;
(2)在压缩弹簧过程中小球的最大动能Ekm;
(3)小球最终停止的位置.
如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg,木板的质量M=4kg,长L=2.5m,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N拉木板,g取10m/s2,求:
(1)木板的加速度;
(2)要使木块能滑离木板,水平恒力F作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的最大静摩擦力为3N,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.
如图所示,光滑导轨与水平面成θ角,导轨宽L,匀强磁场磁感应强度为B.金属杆长也为L,质量为m,水平放在导轨上.当回路总电流为I时,金属杆正好能静止.求:
(1)当磁场B的方向竖直向上时,该匀强磁场的磁感应强度B的大小;
(2)若磁场B的大小和方向均可改变,要使导体棒仍能保持静止,试确定此时磁感应强度B的最小值的大小和方向.
质量为m=1.0kg的小滑块(可视为质点)放在质量为M=3.0kg的长木板的右端,木板上表面光滑,木板与地面之间的动摩擦因数为μ=0.2,木板长L=1.0m.开始时两者都处于静止状态,现对木板施加水平向右的恒力F=12N,如图所示,经一段时间后撤去F.为使小滑块不掉下木板,试求:用水平恒力F作用的最长时间.(g取10m/s2)
如图所示,小车在水平路面上加速向右运动,一个质量为m的小球,用一条水平绳和一条斜绳(斜绳与竖直方向θ=30°),把该小球系于车内,不计绳的质量,求下列情况下,两绳对小球的拉力大小.
(1)车以加速度a1=运动;
(2)车以加度度a2=g运动.