(本小题满分13分)设椭圆C:的离心率
,点M在椭圆C上,点M到椭圆C的两个焦点的距离之和是4.
(1)求椭圆C的方程;
(2)若椭圆的方程为
,椭圆
的方程为
,则称椭圆
是椭圆
的
倍相似椭圆.已知椭圆
是椭圆C的3倍相似椭圆.若椭圆C的任意一条切线
交椭圆
于M,N两点,O为坐标原点,试研究当切线
变化时
面积的变化情况,并给予证明.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
M为AB的中点(1)求证:BC//平面PMD(2)求证:PC⊥BC;(3)求点A到平面PBC的距离.
在中,角
所对的边分别为
已知
且
(Ⅰ)当
时,求
的值;(Ⅱ)若角
为锐角,求
的取值范围.
已知圆C:,是否存在斜率为1的直线
,使以
被圆C截得的弦AB为直径的圆过原点?若存在,求出直线
的方程;若不存在,请说明理由.
某市5000名学生参加高中数学毕业会考,得分均在60分以上,现从中随机抽取一个容量为500的样本,制成如图a所示的频率分布直方图.
(1)由频率分布直方图可知本次会考的数学平均分为81分,请估计该市得分在区间的人数;
(2)如图b所示茎叶图是某班男女各4名学生的得分情况,现用简单随机抽样的方法,从这8名学生中,抽取男、女生各一人,求女生得分不低于男生得分的概率.