某班开展安全知识竞赛活动,班长将所有同学的成绩分成四类,并制作了如下的统计图表:
根据图表信息,回答下列问题:
(1)该班共有学生 人;表中a= ;
(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.
如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若cosC=,AC=6,求BF的长.
商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到汁的概率是;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),将△ABC绕原点O旋转180度得到△A1B1C1.平移△ABC得到△A2B2C2,使点A移动到点A2(0,2),结合所给的平面直角坐标系解答下列问题:
(1)请画出△A1B1C1;
(2)请直接写出点B2、C2的坐标;
(3)在△ABC、△A1B1C1、△A2B2C2中 ,△A2B2C2与成中心对称,其对称中心的坐标为.
如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF. 求证:AB=DE.
已知一次函数y=kx+2(k≠0)图象过点(3,-4),求不等式kx+2≤0的解集.