喝绿茶前需要烧水和泡茶两个工序,即需要将电热壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温 (℃)与时间菇(min)成一次函数关系;停止加热1分钟后(1分钟内水温不变),水壶中水的温度y(℃)与时间
(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)求出图中AB所在直线对应的函数关系式,并且写出自变量的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
如图,在△ABC中,∠A=300,,BC=
,求AB的长。
如图,抛物线与轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。
(1)求抛物线的解析式;
(2)点是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点在(1)中抛物线上,点
为抛物线上一动点,在
轴上是否存在点
,使以
为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点
的坐标,若不存在,请说明理由。
如图,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD。
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连结DE,求证:ED与⊙O相切。
如图,为举办毕业联欢会,小颖设计了一个游戏:游戏者分别转动如图的两个可以自由转动的转盘各一次,当两个转盘上的指针所指字母都相同时,他就获得一次指定一位到会者为大家表演节目的机会。
(1)利用树形图或列表的方法表示出游戏可能出现的所有结果。
(2)若小明参加一次游戏,则他能获得这种指定机会的概率是多少?
先阅读下面的例题,再按要求解答。
例:解一元二次不等式x2-9>0
解:∵x2-9=(x+3)(x-3) ∴(x+3)(x-3)>0
由有理数的乘法法则“两数相乘,同号得正”得
(1) (2)
解不等式组(1),得x>3
解不等式组(2),得x<-3
∴(x+3)(x-3)>0的解集为x>3或x<-3
即一元二次不等式x2-9>0的解集为x>3或x<-3
问题:求分式不等式的解集