如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
如图,某校合作学习小组随机抽样统计部分高年级男同学对必修球类“篮球、足球、排球”三大球的喜爱程度的人数,绘制出不完整的统计图表如下:
(1)试把表格中的数据填写完整:
品牌 |
篮球 |
足球 |
排球 |
抽样人数合计 |
喜爱人数 |
36 |
|
20 |
|
百分比 |
|
30% |
25% |
100% |
(2)试利用上述表格中的数据,补充完成条形统计图的制作(用阴影部分表示);
(3)若再随机抽查该校高年级男学生一人,则该学生喜爱的三大球最大可能是什么.
如图,在等腰△OAB中,OA=OB,以点O为圆心,作圆与底边AB相切于点C.
(1)求证:AC=BC;
(2)若AB=24,OC=9,求等腰△OAB的周长.
如图(一)(二),现有两组扑克牌,每组3张扑克,第一组分别是红桃5、红桃6、红桃7,第二组分别是梅花3、梅花4、梅花5.
(1)现把第一组扑克牌背面朝上并搅匀,如图(一)所示,若从第一组中随机抽取一张牌,求“抽到红桃6”的概率;
(2)如图(一)(二),若把两组扑克牌背面朝上各自搅匀,并分别从两组中各抽取一张牌,试求“抽出一对牌(即数字相同)”的概率(要求用树状图或列表法求解).
如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.
求证:△ABE≌△DCF.
先化简,再求值:(a+4)2+(a+3)(a-3),其中.