某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元;
(2)为了增加收入电脑公司决定再经销乙种型号电脑.已知甲种每台进价3500元,乙种电脑每台进价3000元,公司预计用不少于4.8万元的资金购进这两种电脑共15台,则甲种电脑至少购进多少台.
如图,折叠矩形ABCD的一边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.
(1)求矩形ABCD的面积;
(2)利用尺规作图求作与四边形AEFD各边都相切的⊙O的圆心O(只须保留作图痕迹),并求出⊙O的半径.
已知关于x的一元二次方程x2-2x+m=0有两个不相等的实数根.
(1)求实数m的最大整数值;
(2)在(1)的条件下,方程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球后放回,再随机地摸出一个小球,请用列举法(画树状图或列表)求下列事件的概率:
(1)两次取得小球的标号相同;
(2)两次取得小球的标号的和等于4.
如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.
求证:(1)△ADC∽△ABE;
(2)BE=CF.
已知二次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点.
(1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.