游客
题文

某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘(0<<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务(每月完成的量相同),那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?

科目 数学   题型 解答题   难度 中等
知识点: 二元一次不定方程的应用
登录免费查看答案和解析
相关试题

已知,△ABC在平面直角坐标系中的位置如图所示.

(1)写出A、B、C三点的坐标.
(2)将△ABC向右平移4个单位长度,再向下平移3个单位长度得到 △A1B1C1
(3)求△ABC的面积.

如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.求出图中每束鲜花与每份礼物的价格。

解方程组:

化简:

如图1,ABCD中,AE⊥BC于E,AE=AD,EG⊥AB于G,延长GE、DC交于点F,连接AF.

(1)若BE=2EC,AB =,求AD的长;
(2)求证:EG=BG+FC;
(3)如图2,若AF=,EF=2,点是线段 AG上的一个动点,连接,将沿翻折得
,连接,试求当取得最小值时的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号