某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘(0<
<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务(每月完成的量相同),那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
某体育休闲超市购进一种成本为20元/个的风筝,据市场调查分析,若按25元/个销售,一个月能售出70个,在此基础上,售价每涨1元/个,月销售量就减少2个.设这种风筝的销售单价为x(元/个),该超市每月销售这种风筝的所获得的利润为y(元),针对这种风筝的销售情况,请解答下列问题:
(1)用含x的代数式分别表示出每个风筝的销售利润为 元,每月卖出的风筝的个数是 个;
(2)求y与x之间的函数关系式;
(3)若该超市想在每月销售这种风筝的成本不超过800元的情况下,使得月销售利润达到600元,则每个风筝的售价应定为多少元?
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E。
(1)求证:AD=DC
(2)求证:DE是的切线
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论。
已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.
已知关于的方程
有两个不相等的实数根
(1)求
的取值范围.(2)是否存在实数
使方程的两实数根互为相反数?如果存在,求出
的值,如果不存在,请说明理由.