如图1,小明将一副直角三角尺的直角顶点C叠放在一起.若保持三角尺BCE(其中∠EBC=45°)不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD(其中
∠ADC=30°)绕点C按逆时针方向任意转动一个角度∠BCD.
(1)如图2,若∠ECD =25°,则∠ACB= ;若∠ACB=130°,则∠ECD = .
(2)①当三角尺ACD绕直角顶点C旋转到如图2的位置时,猜想∠ACB与∠DCE的数量关系为 ;
②当三角尺ACD绕直角顶点C旋转到如图3的位置时,上述关系是否依然成立,请说明理由.
(3)设∠BCD=α(0°<α<180°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.
②在旋转过程中,若AD与三角尺BCE的一条边平行,请求出α的所有可能值.
(河池)如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.
(1)求证:FD是⊙O的切线;
(2)若AF=8,tan∠BDF=,求EF的长.
(河池)如图,在△ABC中,∠ACB=90°,AC=BC=AD.
(1)作∠A的平分线交CD于E;
(2)过B作CD的垂线,垂足为F;
(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.
(河池)计算:.
(桂林)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.
(1)如图1,求⊙O的半径;
(2)如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.
(桂林)如图,在▱ABCD中,E、F分别是AB、CD的中点.
(1)求证:四边形EBFD为平行四边形;
(2)对角线AC分别与DE、BF交于点M、N,求证:△ABN≌△CDM.