游客
题文

(本题10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+1(k≠0)与x轴交于点A,与y轴交于点C,过点C的抛物线y=ax2-(6a-2)x+b (a≠0)与直线AC交于另一点B,点B坐标为(4,3).

(1)求a的值;
(2)点p是射线CB上的一个动点,过点P在作PQ⊥x轴,垂足为点Q,在x轴上点Q的右侧取点M,使MQ=,在QP的延长线上取点N,连接PM,AN,已知tan∠NAQ-tan∠MPQ=,求线段PN的长;
(3)在(2)的条件下,过点C作CD⊥AB,使点D在直线AB 下方,且CD=AC,连接PD,NC,当以PN,PD,NC的长为三边长构成的三角形面积是时,在y轴左侧的抛物线上是否存在点E,连接NE,PE,使得ΔENP与以PN、PD、NC的长为三边长的三角形全等?若存在,求出点E坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,利用一面墙(墙的长度不超过45米),用总长80米的篱笆围一个矩形场地.

(1)设所围矩形ABCD的边AB为x米,则边AD为多少米(用含x的代数式表示);
(2)若围成矩形场地的面积为750米2,求矩形ABCD的边AB、AD各是多少米?

如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.

(1)求证:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的长.

在一个不透明的盒子中,共有“一白三黑”四枚围棋子,它们除颜色外无其他区别.
(1)随机地从盒子中取出1枚,则取出的是白子的概率是多少?
(2)随机地从盒子中取出1枚,不放回再取出第二枚,请用画树状图或列表的方式表示出所有等可能的结果,并求出恰好取到“两枚棋子颜色不相同”的概率是多少?

如图,在某校办公楼AC前,挂着“海西先行多做贡献——教育为先;南安创新争当榜样——育人为本”的宣传条幅AB,在距楼底C处15米的地面上一点D,测得条幅顶端A的仰角为,条幅底端B的仰角为,求宣传条幅AB的长度.(计算结果精确到0.1米).

如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).

①根据题意,请你在图中画出△ABC;
②在原图中,以B为位似中心,画出△使它与△ABC位似且相似比是3:1,并写出顶点A′和C′的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号