给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
已知-
=
,求
的值.
阅读下列材料,你能得到什么结论?并利用(1)的结论分解因式.
(1)形如x2+(p+q)x+pq型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和,把这个二次三项式进行分解因式,可以这样来解:
x2+(p+q)x+pq=x2+px+qx+pq
=(x2+px)+(qx+pq)=x(x+p)+q(x+p)
=(x+p)(x+q).
因此,可以得x2+(p+q)x+pq=________.
利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式.
(2)利用(1)的结论分解因式:
①m2+7m-18;
②x2-2x-15.
已知+
=
(a≠b),求
-
的值.
先化简,再求值:÷(x+1)其中x=
.
先化简、再求值÷
,其中x=
+1.